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Historical Fuel Burn Improvements
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Propulsion Challenge
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Regulatory Challenges
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Make airlines more profitable in an increasingly difficult environment
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The suppliers’ broader task ...
Delivering customer value with technology - Clean, quiet, affordable
and reliable systems

More comprehensive than just lowering GHGs

Fuel consumption Our R&D investments
L Emissions - Materials
O Noise - Aerodynamics
W Ownership Cost - Combustion [
E  Maintenoes - Cycles/Planforms | |
R Disruptions - ....c_hitectures \\\
Impact of new te . % ..
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Opportunities for the Future
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* Highly Loaded
Compressors

* High OPR Low
Emissions
Combustors

 Adaptive cycles

e Constant Volume
Combustion

 Hybrid Electric
Propulsion

. Low Loss

Inlets

» \Variable Low
Loss Exhausts

 Distributed
Power
Transmission

 Very High BPR
Turbofans

 Ultra High BPR
Turbofans

* Open Rotors

* Distributed
Propulsion

» Wake Ingestion

quel
payload + A;Wempty “ \,

* Novel Alloys /
MMC's

 Non-metallics

» Advanced Engine
Architectures
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Composite development timeline
Technology maturation and advancement
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Vision for 2030 — 2050 Propulsion Systems

Revolutionary Ideas Required For Future Aviation

Non-Brayton Cycle Propulsion

(CVC, Electric, etc.) ~
'b

NASA N3-X

Distributed,
Hybrid-Electric

=y —

Brayton Cycle Propulsion

(Turbo Gas Generators| Key Technologies to Bridge The Gaps
High OPR Cores

Advanced Propulsors (Open Rotor, etc.)
Distributed Propulsion

Electrical Systems (Fuel Cells, Batteries, Motors)
Superconductivity / Cryo Systems

2050
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Evolution To All Electric Commercial Propulsion
Revolutionary Technologies Needed

)

Gas Turbine Engine
Propulsion

* Engines ~15,000 Ibs
* Fuel ~8,000 Ibs
» Total ~ 23,000 Ibs

Hybrid Turbo-Electric
Propulsion

* Engines ~15,000 Ibs

* Fuel ~5,000 Ibs

* Motors + Converters~ 2000 lbs
» Batteries ~ 25,000 Ibs

* Total ~47,000 Ibs

All Electric Propulsion

* Fans + Nacelles ~ 6000 Ibs

* Motors + Converters~ 11,000 Ibs
» Batteries ~ 55,000 Ibs

» Total ~72,000 lbs

—
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Commercial Electric Propulsion
Coming....But When?

Traditional Hurdles

“System-Level” benefits/impacts
Power/Weight/VVolume, packaging
Impacts from production, operation and
maintenance

Commercial airframe integration timelines
Electric Motor Ramp Rate/Impulse

Prime reliability

Certification

Cost

From Published NASA Sites

What has changed?
Increased environmental concerns: noise,
emissions, fuel burn
Fuel costs
Electrical technology state-of-the-art and [ NV-X-Y- N (11 R = e e e

projected improvements Propulsion Concept
Batteries and Fuel cell invention

Significant Advancements & Opportunities
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Future Engine Design Space

Advanced Airframes
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Advanced Power Transfer and Wake Propulsion Enabling
Concepts Target Untapped Performance Potential




Key Pacing Items for Future Programs
Increased Airframe Integration Needed Sooner in Process

N+1 N+2 N+3 & Beyond

Refining Propulsion
Non-Metallic Materials LEAP Program (~2016)

Distributed Controls

Advancing Propulsion
Advanced Metallics & Coatings TIAl on GEnx ™, Icephobic

'

Advanced Architectures
p—

Full Thermal / Power Mgmt and Optimization
"Flight Path Optimization

Revolutionary Propulsion

Non-Brayton Cycles CVC, DARPA Vulcan
Hybrid-Electric Propulsion Fuel Cells, Batteries
Embedded, Pylon Mounted, Electric

Distributed Propulsion
|
Need Balance of Evunary Technologies
. imagination at work ) . 12




Turbo-electric Distributed Propulsion Design Process
System Integration Requires Divergent-Convergent Process

Systems integration is a divergent-convergent-divergent process

- High level studies assess concept benefits then drive need for detailed studies
Fundamental understanding of advanced technology systems needed

- Systems integration requires understanding of technology trade factors

- Analytic studies and component tests needed to understand system interactions
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Safely landing the world’s airline fleets

Inefficient
stepped
approach

» Precise, optimal flight paths
e Less fuel, emissions
e Lower noise

a product of

o . =
ymagination
GE's Performance-based Navigation GE's TrueCourse*" Flight Management
(PBN) Services allow the aircraft to Systems accurately predict and guide
arrive at the airport using precise the aircraft to the efficient trajectory in
navigation to ensure optimal all four dimensions
efficiency.
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Summary

Key challenge is minimizing fuel cost while meeting the
constraints of the commercial aviation environment:

» Emissions
» Noise
» Reliability

Traditional fuel burn reduction strategies are beginning to yield
diminishing returns — innovative technologies are required

» Light weight / high propulsive efficiency
» Highly integrated / distributed propulsion
» Non-Brayton cycles

Multiple paths needed...no “all in” on one innovation!
» From materials to integrated installations
» Near term to 2050+ architectures

| Revolutionary Ideas Required
For Future Aviation :








